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Phase and solute fields across the solid-liquid interface of a binary alloy
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Solidification of binary alloys is characterized by a sharp structural transition across the solid-liquid inter-
face. It is a typical situation which suggests a nonlocal dependence of the appropriate thermodynamic potential
on its associate fields. Phase-field models with a gradient contribution for the order parameter have proved to
account for nonequilibrium effects, as solute trapping and kinetic undercooling of the solid-liquid interface.
The inclusion of a gradient term for the concentration field has also been theoretically investigated, but in this
case the correspondence between predicted phenomena and experimental results is still rather unexplored. In
the present study we analyze numerical solutions of a phase-field model in both steady and transient condi-
tions. We focus on effects which are critically dependent on the composition field across the solid-liquid
interface; the extent of the concentration gradient correction is related to measurable quantities to suggest
methods for a comparison between the model predictions and experimental data.@S1063-651X~99!01108-3#

PACS number~s!: 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp
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I. INTRODUCTION

Rapid solidification of binary alloys is addressed throu
sharp interface or phase-field models. Sharp interface mo
@1,2# utilize the diffusion equation to describe the transp
of heat and solute through the bulk phases. The match
conditions at the interface boundary reflect~i! conservation
constraints for energy and solute and~ii ! constitutive laws
that relate the local interface concentrationc and temperature
T to the front velocityv. The latter require a separate mo
ellization of the interface kinetics on a microscopic sca
Aziz and Kaplan@3# and Aziz and Boettinger@4# addressed
this point within the continuous growth model~CGM!, as-
suming isothermal and steady conditions: they argued
the solute redistribution across the solid-liquid interface
driven by a diffusional mechanism characterized by a vel
ity scalevd;D/a, whereD is the interface solute diffusivity
anda is a length representative of the interface thickness
the front velocity becomes of the order ofvd , this mecha-
nism becomes less effective and the partition coeffici
k(v) ~i.e., the ratiocs /cl of solute concentration in the grow
ing solid to that in the liquid at the interface! deviates from
the equilibrium valueke , increasing towards unity at larg
growth rates. This phenomenon, well known in rapid soli
fication experiments, is termedsolute trapping. It is worth
noting that the above argument implies an intrinsica
‘‘finite-thickness’’ interface, whereas the diffusional mod
requires boundary conditions on a zero-dimensional in
face. This is a rather delicate issue in rapid solidificat
processes when the solute diffusion length becomes of
order of atomic dimensions~i.e., D/v;a!.

Within the phase-field model~PFM! an order paramete
f(x,t) characterizes the phase of the system at each poi
free-energy~or entropy! functional, depending onf, T, andc
and including gradient correction terms, is then extremiz
in respect to these variables to derive the dynamic equat
for the process. Wheeler, Boettinger, and McFadd
~WBM1! @5# were the first to apply the PFM to alloy solid
fication in the isothermal limit. They started from a Landa
Ginzburg free-energy functional depending on the bulk fr
PRE 601063-651X/99/60~2!/1913~8!/$15.00
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energy density and including a (¹f)2 term. In their study an
asymptotic analysis was conducted to demonstrate that
model recovers the classical sharp interface formulat
when the interfacial layer is sufficiently thin; moreover, th
characteristic parameters of the PFM were related to the
tual material properties. However, in their analysis the pa
tion coefficientk resulted a decreasing function of the fro
velocity, and the authors concluded that the model was
able to predict solute trapping. The same conclusion could
drawn from the sharp interface limit of a slightly differen
model proposed by Caginalp and Jones@6#. In a succeeding
study Wheeler, Boettinger, and McFadden~WBM2! @7# re-
covered the correct dependencek(v) through the inclusion in
the free-energy functional of a (¹c)2 term, acting to oppose
the contraction of the solute profile at large velocities.
shown by Bi and Sekerka@8#, this new version of the mode
is the limiting case of a more general thermodynamic form
lation which contains square gradient terms in all the ass
ate fields of a suitable entropy functional and admits c
pling effects between phenomena of equal tensorial ra
Retaining the (¹c)2 term, the surface free-energy excess
duces to the values of the surface tension of the pure sol
or solute atc50 andc51, respectively, exhibiting a maxi
mum in between@7,9#. At low solute concentration, this be
havior seems to be in qualitative agreement with some
perimental results; however, the lack of reliable experimen
data makes the validation of the model very hard. A mo
intriguing perspective was achieved when it was realized
the (¹c)2 term is not necessary to predict solute trappi
@10,11#: this phenomenon naturally disappears in the sh
interface limit of the model studied by WBM1, but is full
recovered taking into account the finite thickness of the
terface. Neglecting the (¹c)2 contribution, in a further in-
vestigation Ahmadet al. @11# were able to show that eve
the free-energy dissipation in the interfacial region due
solute dragnaturally arises from the model equations; mo
over, they pointed out that solute trapping is critically depe
dent on the modeling of the solute diffusivity in the interf
cial region. Then, at present, no decisive arguments
available to assess whether and to what extent a grad
1913 © 1999 The American Physical Society



o
in

i-
m
fu
ts
ld
bl
f t
s
es
c

i
fa
u
in

rn
x
ils

he
h

r-

T

i
se
e

s
in
as

e
be

unit

ate-

id

y

as

nd

ure
lds,
the

1914 PRE 60MASSIMO CONTI
concentration term is necessary for a proper description
the interfacial dynamics.

In the present study we address the rapid solidification
an ideal binary alloy through a phase-field model which
corporates both the (¹f)2 and (¹c)2 terms. The model is
solved numerically in directional solidification cond
tions: the solidification process is driven by a moving te
perature field, neglecting the effect of the latent heat dif
sion. The aim of our investigation is to focus on effec
which are critically dependent on the composition fie
across the solid-liquid interface in order to relate predicta
phenomena and measurable quantities with the extent o
concentration gradient correction. As the latter cause
stretching of the solute profile, we found that it reflects
sentially on the solute relaxation time across the interfa
decreasing the value of the diffusional velocityvd . Then the
onset of solute trapping is shifted towards lower velocities
a predictable way. Moreover, the dependence of the inter
temperature on the interface velocity is also affected, res
ing in a shift of the parameters region where oscillatory
stabilities of the solidification front can be expected.

The paper is organized as follows: In Sec. II the gove
ing equations of the model will be derived through the e
tremization of an entropy functional. In Sec. III some deta
of the numerical method will be given, and in Sec. IV t
results of the numerical simulations will be discussed. T
conclusions will follow in Sec. V.

II. GOVERNING EQUATIONS

The model directly follows the formulation given by Wa
ren and Boettinger@12# for isothermal solidification: full
details of the derivation are presented in that reference.
total entropy of an ideal solution of componentsA ~solvent!
andB ~solute! is written as

S5E Fs~e,f,c!2
e2

2
u¹fu22

d2

2
u¹cu2Gdv, ~1!

where integration is performed over the system volume;s is
the thermodynamic entropy density that depends on the
ternal energy densitye and on the concentration and pha
fields; the coefficientse and d describe the extent of th
gradient term corrections. The phase fieldf assumes the
valuesf50 in the solid andf51 in the liquid; intermediate
values correspond to the interface between the two pha
To ensure a positive local entropy production, the govern
equations for the phase and solute fields can be written

ḟ5Mf

dS
df

, ~2!

ċ52¹•S Mc¹
dS
dc D , ~3!

whereMc andMf are positive constants. For the pure sp
ciesA andB, the bulk free-energy density is postulated to
of the form;

f A,B~f,T!5TGA,B~f!

1p~f!LA,BS 12
T

TA,BD2CT lnS T

TA,BD , ~4!
of
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where GA,B5(1/4)W̃A,Bf2(12f)25W̃A,Bg(f) is a sym-
metric double-well potential with equal minima atf50 and
f51, scaled by the positive well heightW̃A,B; TA,B andLA,B

represent the melting temperature and the latent heat per
volume of the pure speciesA or B. For the specific heatC we
assume constant and equal values for both phases and m
rials. Choosing the functionp(f) as p(f)5f3(10215f
16f2), the condition is enforced that bulk solid and liqu
are described byf50 and f51, respectively, for every
value of the temperature@13#. For an ideal solution the
chemical potentials of the solvent and solute are given b

mA5 f A~f,T!1
RT

vm
ln~12c!, ~5!

mB5 f B~f,T!1
RT

vm
ln~c!. ~6!

Here R is the gas constant andvm is the molar volume.
The bulk free energy density of the solution is assumed
f 5(12c)mA1cmB; then, recalling that 2T(]s/]f)
5] f /]f and taking the functional derivatives in Eqs.~2! and
~3! yields

]f

]t
5Mf@e2¹2f2~12c!H̃A~f,T!2cH̃B~f,T!#, ~7!

]c

]t
52¹•H Dcc~12c!

vm

R
@H̃A~f,T!2H̃B~f,T!#¹f

2Dc¹c1Dcc~12c!
vm

R
G̃~f,T!¹T

1Dcc~12c!
vm

R
¹~d2¹2c!J , ~8!

with

H̃A,B~ḟ,T!5W̃A,B
dg~f!

df
2

dp~f!

df
LA,B

T2TA,B

TTA,B , ~9!

G̃~f,T!52
p~f!

T2 ~LA2LB!. ~10!

In Eq. ~8! the standard definition of the solute diffusivityDc
has been recovered, taking

Dc5
Mc

c~12c!

R

vm
. ~11!

To allow for different diffusivities in the solid and liquid
phases, in the followingDc will be taken as Dc5Ds
1p(f)(Dl2Ds), Dl and Ds being the diffusivities in the
liquid and in the solid, respectively. Notice that in@12# the
contribution of (¹c)2 in Eq. ~1! is neglected, settingd50,
and, dealing with isothermal solidification, on the right-ha
side of Eq.~8! only the first two terms are retained.

As we neglect the latent heat diffusion, the temperat
field is decoupled from the phase and concentration fie
and is represented as a traveling wave moving towards
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PRE 60 1915PHASE AND SOLUTE FIELDS ACROSS THE SOLID- . . .
positive x direction with uniform gradientG̃ and constant
velocity Ṽ0 :

]T

]t
52Ṽ0

]T

]x
52Ṽ0G̃. ~12!

The problem will be treated by scaling lengths to so
reference lengthj and time toj2/Dl . We allow Mf to de-
pend on the local composition asMf5(12c)Mf

A1cMf
B .

To associate the model parameters to the material prope
of the alloy, we follow the method suggested by Warren a
Boettinger@12#, based on the analysis of the sharp interfa
limit of the model, though in the present case the contri
tion of (¹c)2 in Eq. ~1! could affect to some extent th
results of their analysis. Then the governing equations
come

]f

]t
5@~12c!mA1cmB#@¹2f1~12c!QA~T,f!

1cQB~T,f!#, ~13!

]c

]t
52¹•$c~12c!l~f!@HA~f,T!2HB~f,T!#¹f

1c~12c!l~f!G~f,T!¹T

1c~12c!l~f!¹~E¹2c!2l~f!¹c%, ~14!

]T

]t
52V0

]T

]x
52V0G, ~15!

where in Eq. ~14! we put E5(vmd2)/(Rj2), HA,B(f,T)
5(vm /R)H̃A,B(f,T), G(f,T)5(vm /R)G̃(f,T), andl(f)
5Ds /Dl1p(f)(12Ds /Dl). In Eq. ~15! we define V0

5Ṽ0j/Dl and G5G̃j. The functionQA,B(f,T) is defined
as

QA,B~f,T!52
j2

~hA,B!2

dg~f!

df

1
1

6&

j2LA,B

sA,BhA,B

T2TA,B

T̄I

dp~f!

df
, ~16!

where sA,B and hA,B indicate the surface tension and th
interface thickness of the pure componentsA andB, respec-
tively; T̄I is the initial ~equilibrium! interface temperature
The model parametersmA,B andW̃A,B depend on the physi
cal properties of the alloy components through

mA,B5
bA,BsA,BTA,B

DlL
A,B , W̃A,B5

12

&

sA,B

TA,BhA,B , ~17!

wherebA,B is the kinetic undercooling coefficient of pureA
or B, which relates the interface undercooling to the interfa
velocity v throughv5bA,B(TA,B2TI).

To estimate the above parameters we referred to the t
mophysical properties of nickel~solvent! and copper~sol-
ute!, summarized in Table I. The solute diffusivity in th
solid phase was estimated asDs51026Dl . The length scale
e

ies
d
e
-

e-

e

r-

was fixed atj52.131024 cm; the kinetic undercooling co
efficients were fixed tobA5128.64 cm s21 K21 and bB

5153.60 cm s21 K21, not far from the actual best estimate
@14#, and a realistic value for the interface thickness w
selected as 1.6831027 cm. With these values,W̃A51.082,
W̃B51.079, andmA5mB5350 result.

III. NUMERICAL METHOD

The evolution of Eqs.~13!–~15! has been considered i
one spatial dimension, in the domain 0<x<xm , with xm
large enough to prevent finite-size effects. Fluxless bound
conditions forf, c and transparent conditions forT were
imposed at the domain walls. The initial temperature pro
was defined as

T~x,0!5T̄I1G~x2x0!, ~18!

with a phase boundary at temperatureT̄I separating the solid
region ~x,x0 , f50! and the liquid region~x.x0 , f51!.
The interface was prepared in equilibrium conditions, w
the initial solute concentration in the two phases correspo
ing to the equilibrium values atT̄I . Then the temperature
profile was pulled towards the positivex direction, starting
the solidification process.

To discretize the equations of the model second orde
space and first order in time, finite-difference approximatio
were utilized; then, an explicit scheme was employed to
vance the solution forward in time. As we did not use ada
tive techniques, the entire grid was resolved at the sa
scale. The choice of the computational grid posed some d
cate problems. The mesh spacingDx has to be selected low
enough to ensure an accurate resolution of both the ph
field and concentration profiles in the interfacial region. T
fourth-order concentration equation~14! requires, for nu-
merical stability, a time stepDtc which scales as (Dx)4. On
the other hand, the phase-field equation~13! is a diffusion-
reaction equation with diffusivityDf5mA,B5350; in this
case, the time step for stability,Dtf , is expected to scale a
(Dx)2 and, in one dimension, must be chosen at least lo
than (Dx)2/(2Df). Because of the large value ofDf , in
most of the simulations we foundDtf,Dtc . At least in
principle, to save computational effort, the two equatio
could be resolved with different time steps~i.e., iterating the
equation with smallerDt within a single time step of the

TABLE I. Material parameters for the Ni-Cu alloy.

Parameter Nickel Copper

Tm ~K! 1728 1358
L ~J/cm3! 2350 1728
vm ~cm3/mol!a 7.0 7.8
s ~J/cm2! 3.731025 2.831025

b ~cm/K s!b 160 198
Dl ~cm2/s! 1025 1025

aAn average value of 7.4 will be taken.
bFrom the estimation of Willneckeret al. @14#.
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1916 PRE 60MASSIMO CONTI
equation with largerDt!; however, we decided to use th
smallest ofDtf andDtc for both equations.

Previous studies conducted in one or two dimensions
dicate that accurate solutions can be obtained choosing a
spacing of the order of the nominal interface thicknessh̃A,B

5hA,B/j. In our simulations we haveh̃A,B5831024. We
observed that to avoid spurious instabilities of the grow
rate the maximumDx allowed wasDx5631024 for e/d
.0.1; at lower values ofe/d, the stretching of the solute
profile in the interfacial region allowed us to use a value
Dx<831024. Convergence of the numerical results w
checked for both low and large values ofe/d. Figure 1 shows
the solute profile fore/d50.025,V05500, andG5200 K.
The initial concentration of the alloy isc2`50.056 09 in the
solid phase andc1`50.070 68 in the liquid phase, corre
sponding to an equilibrium temperatureT̄I51706.06 K. The
picture is taken att52.531024, when the growth proces
reached a steady regime. The three sets of data refer to
ferent values of Dx, i.e., Dx5831024, 631024, 4
31024. It can be observed that with these resolutions
solute profile is almost independent ofDx. In Table II we
summarize the grid parameters we used in our simulat
for each value ofe/d.

FIG. 1. Concentration profile fore/d50.025, calculated with
three different values of the grid spacingDx: Dx5831024 ~dia-
monds!, Dx5631024 ~squares!, and Dx5431024 ~triangles!.
V05500 andG5200 K.

TABLE II. Resolution of the computational grid at variouse/d
values.

e/d Dx Dt

0.025 831024 2310210

0.050 831024 8310210

0.100 831024 8310210

0.200 431024 1.25310210

0.500 431024 1.25310210

1.000 431024 1.25310210

`(d50) 431024 1.25310210
-
rid

h

f

if-

e

s

IV. NUMERICAL RESULTS

A. Growth in steady conditions

At first, we characterized the solidification process
steady conditions, determining the two constitutional la
k(v) and TI(v) which describe the interface dynamics. W
set c2`50.056 09 in the solid phase,c1`50.070 68 in the
liquid phase, andT̄I51706.06 K. Depending on the isother
velocity, an oscillatory instability of the solidification fron
can arise when the imposed thermal gradient is not su
ciently high ~see the next subsection!. Then we choseG
5200 K; with this value, after an initial transient, solidifica
tion proceeded at constant rate and with uniform concen
tion c1` in the solid phase. The solute segregation on
moving front was evaluated computing the minimum a
maximum valuescs* and cl* of the solute concentration
across the interface and defining the partition coefficient
k(v)5cs* /cl* ; the interface temperature was determined
terpolating the temperature field atx(f50.5,t). Except for
temperatures, all the results will be presented in nondim
sional units; for the reader’s commodity, we recall that t
length scale is fixed atj52.131024 cm, and the resulting
time and velocity scales are 4.4131023 s and 4.76
31022 cm/s, respectively.

To compare our findings with the predictions of the co
tinuous growth model, we recall that the latter gives the
pendence of the partition coefficient on the growth veloc
in the form

k~v !5
ke1v/vd

11v/vd
, ~19!

ke being the equilibrium value for a stationary interface~ke
50.797 in our case! and vd the diffusional velocity for the
solute redistribution across the moving front;vd is generally
expressed asvd5D/a, whereD is an interface diffusivity
anda is the width of the concentration transition layer.

An asymptotic analysis of the phase-field model, co
ducted in the limite/d!1 @5# pointed out that the partition
coefficient scales, at large velocities, as 12k(v);v22/3, un-
like the predictions of the CGM which give 12k(v)
;v21. However, our simulations were conducted withe/d
ranging from 0.025 tò , so that we tried to identify in any
case a characteristic velocity for solute trapping throug
best fit of our numerical data with the dependence given
Eq. ~19!. The ratio e/d sets the length scale of the solu
transition layer across the solid-liquid interface, opposing
the contraction of the solute profile. This issue is stresse
Fig. 2, where the solute field is shown for three differe
values ofe/d; the isotherm velocity isV05500. The thick-
ness of the transition layer isl 52431024 for d50 and
stretches tol 57031024 for e/d50.025. Then we expec
that solute relaxation across the interface becomes less e
tive at large velocities with decreasinge/d. Figure 3 shows
the partition coefficient, normalized as@k(v)2ke#/(12ke),
versus the interface velocity for different values ofe/d. We
observe that the curves corresponding tod50 and e/d
51.0 are almost indistinguishable, but ase/d is further de-
creased, the partition coefficient shifts towards higher val
and the onset of solute trapping occurs at lower interf
velocities. Usingvd as an adjustable parameter in Eq.~19! to
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fit the data represented in Fig. 3, we obtained the res
shown in Table III. The diffusional velocity corresponding
e/d50.025 is more than an order of magnitude lower th
the asymptotic value corresponding tod50. It is worth not-
ing that the available experimental data@15,16# indicatevd
values which never fall below the meter per second ran
suggesting that the lowest values ofe/d give an unrealistic
picture of the solidification process.

The dependence of the interface temperature on the in
face velocity is the result of two opposite effects. At lo
velocities, due to solute trapping~and to the consequent re
duction of solute concentration on the liquid side of the
terface!, TI is an increasing function ofv. At higher veloci-
ties the undercooling required to advance the solidificat
front becomes important: theTI(v) curve traverses a maxi
mum at v5v* , T5T* , and then exhibits a descendin

FIG. 3. Normalized partition coefficient versus the front veloc
for different values of thee/d ratio.

FIG. 2. Concentration profile forV05500 andG5200 K; xI

represents the position of the solid-liquid interface, located af
50.5.
ts

n

e,

r-

-

n

branch. Along these arguments the position of the maxim
on thev axis should be strongly affected by the diffusion
velocity vd and, ultimately, by the ratioe/d. Figure 4 shows
the numerical results for theTI(v) dependence. With in-
creasinge/d the onset of solute trapping is shifted towar
higher velocities andv* is shifted as well. The latter isv*
5200 for e/d50.025 and increases untilv* 51400 when
d50. On the other hand, the temperatureT* undergoes a
variation of few tenths of degree over the whole range
variation of e/d. The above results suggest that phenome
critically dependent onv* could be natural candidates t
estimate the extent of the solute gradient correction in
model.

B. Oscillatory instability of the solidification front:
The effect of the solute profile

TheTI(v) curves shown in Fig. 4 exhibit a nonmonoton
behavior. In the range of positive slope the driving force
the process~i.e., the thermodynamic undercooling! is a de-
creasing function of the associate flux~the growth rate!, re-
sulting in unstable planar growth. When the isotherm vel
ity is fixed in this region and the thermal gradient is n
sufficient for an effective restabilization, steady growth
prevented and the process undergoes periodic transitions
tween low- and high-velocity states@10,17–20#. This insta-
bility is responsible for the formation of the so-calledbanded

FIG. 4. Interface temperature versus the front velocity for d
ferent values of thee/d ratio.

TABLE III. Diffusional velocity vd for different values ofe/d.

e/d vd

0.025 25
0.050 55
0.100 110
0.200 190
0.500 265
1.000 285

` 290
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FIG. 5. Interface velocity vs time. The isotherm velocity isV05250 and the thermal gradientG540 K. ~a! e/d50.1, ~b! e/d50.2, and
~c! d50.
ed
es
ig
ing
s
ta
o
o
is

oy

r
am

th
re

-
in

lly

the
e ve-

the

in
he

,

ady

her
el-
structures. Observed by several authors in rapidly solidifi
alloys, at growth rates near the absolute stability limit, th
structures consist of a regular succession of dark and l
bands, parallel to the solid-liquid front, with a band spac
ranging from 0.3 to 1.5mm. Detailed experimental studie
@21–25# have shown that the dark bands have a precipi
structure, either cellular-dendritic or eutectic, depending
the alloy composition; the light bands are formed
precipitation-free solid solution, with a composition that
uniform and equal to the nominal concentration of the all

As shown in Fig. 4, with increasinge/d the unstable~up-
sloping! branch of theTI(v) curves extends towards large
interface velocities, suggesting that the region of the par
eters space where the oscillatory instability~and the banded
structure! is expected should be strongly dependent on
e/d ratio. Plots of the interface velocity versus time a
shown in Figs. 5~a!–5~c! for different values ofe/d. The
isotherm velocity isV05250 and the thermal gradient isG
540 K. When e/d50.1 the effect of initial conditions is
rapidly lost; the front velocityv ~and the interface tempera
ture TI! describes few damped oscillations before reach
e
ht

te
n
f

.

-

e

g

the final steady state withv5V0 . For e/d50.2 the oscilla-
tions are still damped, but with a larger amplitude. A tota
different dynamic behavior emerges whend50. Here the
isotherm velocity is fixed well inside the unstable branch;
process never reaches a steady regime, and the interfac
locity continuously oscillates around the average valueV0 .
We observe, on the other hand, that the frequency of
oscillations@n51961 in Fig. 5~c!# is almost unaffected by
the e/d ratio.

The cyclic behavior of the interface dynamics shown
Fig. 5~c! is represented in Fig. 6 as an orbit followed by t
system in the (TI ,v) plane ~solid dots!. The vertical line
indicates the isotherm velocityV05250; on the same graph
the solid line represents the steadyTI(v) curve. For most of
the cycle, the interface velocity is lower thanV0 and the
interface cools down; then, the orbit traverses the ste
TI(v) curve at pointA, where the front velocity is not far
from V0 , and with a strong acceleration reaches pointB on
the stable branch. Here the interface velocity is much hig
than V0 and the interface warms up; solidification is dec
erated and the operating point shifts toC. A numerical study
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conducted in two dimensions@26# showed that in the low-
velocity section of the cycle the planar front breaks into
dendritic pattern, resulting in strong solute microsegregat
at high velocity, the absolute stability limit is reached, t
dendritic pattern is suppressed, and planar growth occ
Notice that the shape of the cycle can be modified when
latent heat diffusion is taken into account@18,27#.

As the solute segregation across the interface depend
the interface velocity, we can argue that the extent of
concentration gradient correction should leave a trace in
solidified alloy. In Fig. 7 we show the concentration profi
with V05250 andG540 K. The solid-liquid interface is
clearly recognizable at the peak ofc(x). For e/d50.1 the
concentration profile in the solid phase shows damped o
lations, along a distance corresponding to the initial tr
sient; when the steady regime is reached, the compositio
the solidified alloy corresponds to the liquid composition
infinity. For e/d50.2 we observe that a distance ofx50.5
~corresponding tox;1 mm! was not enough to reach th
steady regime. Whend50 the periodic structure in the soli
phase reflects the periodic variations of the interface velo
and temperature: at low velocitycs reaches its minimum
then, the interface accelerates, solute partitioning is s
pressed, andcs increases. The wavelength of the solute co
centration profile has been estimated asl50.128, which is
practically coincident with the expected valueV0 /n
50.1274.

FIG. 6. Orbit followed by the process in the (TI ,v) plane for
d50. The isotherm velocity is indicated by the vertical line (V0

5250); G540 K. The solid line indicates the steadyTI(v) curve.
The meaning of the pointsA, B, andC is illustrated in the text.
n;
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V. CONCLUSIONS

In summary, we addressed the rapid directional solid
cation of a binary alloy through a phase-field model whi
includes gradient terms for both the order parameter and c
centration field. To relate the extent of the gradient corr
tion for the solute field to measurable quantities, we focus
on effects which are critically dependent on the composit
across the solidification front. We found that the interfa
dynamics is almost unaffected when thee/d ratio changes
from large values toe/d;1: whend is further increased
until e/d50.025, the diffusional velocityvd is decreased by
more than an order of magnitude; the interface temperat
on the other hand, is almost unaffected. The available exp
mental data, which indicate the onset of solute trapping
the meter per second range, suggest that small values oe/d
give an unrealistic picture of the solidification process a
should be discarded. The characteristic velocityvd fixes also
the range of interface velocities where the oscillatory ins
bility of the solidification front is expected, as it reflects o
the value ofv* which separates the stable and unsta
branches of the steadyTI(v) curve. At present, the evalua
tion of the growth rate in the banded structures is difficu
and experimental errors are greater than 20%@28#; however,
the large excursion ofv* over the range ofe/d values we
explored in this paper should allow a reliable estimation o
least the order of magnitude of this parameter.

FIG. 7. Solute concentration profile along the growth directi
for different values of thee/d ratio. The isotherm velocity isV0

5250 and the thermal gradientG540 K.
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