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Phase and solute fields across the solid-liquid interface of a binary alloy
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Solidification of binary alloys is characterized by a sharp structural transition across the solid-liquid inter-
face. It is a typical situation which suggests a nonlocal dependence of the appropriate thermodynamic potential
on its associate fields. Phase-field models with a gradient contribution for the order parameter have proved to
account for nonequilibrium effects, as solute trapping and kinetic undercooling of the solid-liquid interface.
The inclusion of a gradient term for the concentration field has also been theoretically investigated, but in this
case the correspondence between predicted phenomena and experimental results is still rather unexplored. In
the present study we analyze numerical solutions of a phase-field model in both steady and transient condi-
tions. We focus on effects which are critically dependent on the composition field across the solid-liquid
interface; the extent of the concentration gradient correction is related to measurable quantities to suggest
methods for a comparison between the model predictions and experimentdlSi4163-651X99)01108-3

PACS numbg(s): 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp

[. INTRODUCTION energy density and including & ¢)? term. In their study an
asymptotic analysis was conducted to demonstrate that the
Rapid solidification of binary alloys is addressed throughmodel recovers the classical sharp interface formulation
sharp interface or phase-field models. Sharp interface modeighen the interfacial layer is sufficiently thin; moreover, the
[1,2] utilize the diffusion equation to describe the transportcharacteristic parameters of the PFM were related to the ac-
of heat and solute through the bulk phases. The matchinual material properties. However, in their analysis the parti-
conditions at the interface boundary refl¢gtconservation tion coefficientk resulted a decreasing function of the front
constraints for energy and solute afid constitutive laws velocity, and the authors concluded that the model was un-
that relate the local interface concentratmand temperature able to predict solute trapping. The same conclusion could be
T to the front velocityv. The latter require a separate mod- drawn from the sharp interface limit of a slightly different
ellization of the interface kinetics on a microscopic scale.model proposed by Caginalp and Jof&k In a succeeding
Aziz and Kaplan[3] and Aziz and Boettingel4] addressed study Wheeler, Boettinger, and McFadd@iBM2) [7] re-
this point within the continuous growth modéCGM), as-  covered the correct dependerd®) through the inclusion in
suming isothermal and steady conditions: they argued thahe free-energy functional of &/)? term, acting to oppose
the solute redistribution across the solid-liquid interface isthe contraction of the solute profile at large velocities. As
driven by a diffusional mechanism characterized by a velocshown by Bi and Sekerkia], this new version of the model
ity scalevq~D/a, whereD is the interface solute diffusivity is the limiting case of a more general thermodynamic formu-
anda is a length representative of the interface thickness; aktion which contains square gradient terms in all the associ-
the front velocity becomes of the order of, this mecha- ate fields of a suitable entropy functional and admits cou-
nism becomes less effective and the partition coefficienpling effects between phenomena of equal tensorial rank.
k(v) (i.e., the raticcs/c, of solute concentration in the grow- Retaining the Yc)? term, the surface free-energy excess re-
ing solid to that in the liquid at the interfacdeviates from duces to the values of the surface tension of the pure solvent
the equilibrium valuek,, increasing towards unity at large or solute atc=0 andc=1, respectively, exhibiting a maxi-
growth rates. This phenomenon, well known in rapid solidi-mum in betweern7,9]. At low solute concentration, this be-
fication experiments, is termegblute trapping It is worth  havior seems to be in qualitative agreement with some ex-
noting that the above argument implies an intrinsicallyperimental results; however, the lack of reliable experimental
“finite-thickness” interface, whereas the diffusional model data makes the validation of the model very hard. A more
requires boundary conditions on a zero-dimensional interintriguing perspective was achieved when it was realized that
face. This is a rather delicate issue in rapid solidificationthe (Vc)? term is not necessary to predict solute trapping
processes when the solute diffusion length becomes of thg0,11: this phenomenon naturally disappears in the sharp
order of atomic dimensiong.e., D/v~a). interface limit of the model studied by WBM1, but is fully
Within the phase-field moddPFM) an order parameter recovered taking into account the finite thickness of the in-
¢(x,t) characterizes the phase of the system at each point;tarface. Neglecting theWc)? contribution, in a further in-
free-energyor entropy functional, depending o, T, andc  vestigation Ahmackt al. [11] were able to show that even
and including gradient correction terms, is then extremizedhe free-energy dissipation in the interfacial region due to
in respect to these variables to derive the dynamic equatiorsolute dragnaturally arises from the model equations; more-
for the process. Wheeler, Boettinger, and McFadderover, they pointed out that solute trapping is critically depen-
(WBML1) [5] were the first to apply the PFM to alloy solidi- dent on the modeling of the solute diffusivity in the interfa-
fication in the isothermal limit. They started from a Landau-cial region. Then, at present, no decisive arguments are
Ginzburg free-energy functional depending on the bulk freeavailable to assess whether and to what extent a gradient

1063-651X/99/6(2)/19138)/$15.00 PRE 60 1913 © 1999 The American Physical Society



1914 MASSIMO CONTI PRE 60

concentration term is necessary for a proper description ofyhere GAB=(1/4)WABp2(1— ¢)2=WABg(¢) is a sym-
thel mtﬁrfaual dynamdlcs. i A 4 <olidificat ][netric double-well potential with equal minima ét=0 and
n the present study we address the rapid solidification of, _ " i A B. TAB AB
an ideal binary alloy through a phase-field model which in-¢ 1, scaled by the positive well height -5 ' andL
corporates both theVW(¢)? and (Vc)? terms. The model is
solved numerically in directional solidification condi-
tions: the solidification process is driven by a moving tem-
perature field, neglecting the effect of the latent heat diffu-

e T o neesigaon i 1o Jocus on elecare descrbed byp—0 and - 1, respectuely, (o every
ucally dep ! P : value of the temperaturgl3]. For an ideal solution the
across the solid-liquid interface in order to relate predictable

phenomena and measurable quantities with the extent of th%hemlcal potentials of the solvent and solute are given by

concentration gradient correction. As the latter causes a A A RT

stretching of the solute profile, we found that it reflects es- ut=f,T)+ V—In(l—c), ®)

sentially on the solute relaxation time across the interface, m

decreasing the value of the diffusional veloocity. Then the 5 B T

onset of solute trapping is shifted towards lower velocities in p=1(¢, T+ ——In(c). (6)
. . m

a predictable way. Moreover, the dependence of the interface

temperature on the interface velocity is also affected, result-

Isr;gt;irllitizssr:)l}(ttﬁ;tggligff‘i?;gg:\e;forn?gclg?\ \évgirf (ca)(s:,;:ell(ljatory """The bulk free energy density of the solution is assumed as

b ' f=(1—-c)u”+cuB; then, recalling that —T(ds/d¢)

The paper is organized as follows: In Sec. Il the govern-_ . . L .
ing equations of the model will be derived through the ex-é)ﬁf/igfgsand taking the functional derivatives in E¢8) and
tremization of an entropy functional. In Sec. Ill some details y
of the numerical method will be given, and in Sec. IV the o
results of the numerical simulations will be discussed. The _ 2y2 DA B
—=M Vep—(1—c)H T)—cH T 7
conclusions will follow in Sec. V. ot A€V (1=OHN ST —cHY S, D], (7)

represent the melting temperature and the latent heat per unit
volume of the pure specigsor B. For the specific hedl we
assume constant and equal values for both phases and mate-
rials. Choosing the functiop(¢) as p(¢)= ¢°(10— 15¢
+6¢2), the condition is enforced that bulk solid and liquid

HereR is the gas constant and, is the molar volume.

Il. GOVERNING EQUATIONS ac Vin ~ ~
——=-V-{Dcc(1—c) 5 [HA(¢,T)—H®(¢,T)]Ve
The model directly follows the formulation given by War- at R
ren and Boettingef12] for isothermal solidification: full Ve
details of the derivation are presented in that reference. The —D./Vc+Dcc(1—c) ﬁml“(qb,T)VT
total entropy of an ideal solution of compone#rtgsolven)

andB (solute is written as

N

where integration is performed over the system volusis;
the thermodynamic entropy density that depends on the in-

2 52 +Dcc(1—c)VEmV(52VZC) , 8
s(&¢,0)= 5 [Vol*~ o [Vel*ldv, (D

with
dg(¢) dp(¢) o T-TAE

: ; HAB(p, T)=WAB s (9
ternal energy densitg and on the concentration and phase do d¢ TT
fields; the coefficientss and & describe the extent of the
gradient term corrections. The phase fieldassumes the - PP . g
values$=0 in the solid andp=1 in the liquid; intermediate P(¢T)==— (L"-L7). (10)

values correspond to the interface between the two phases.

To ensure a positive local entropy production, the govemingy, £ (g) the standard definition of the solute diffusiviiy,
equations for the phase and solute fields can be written asy 45 peen recovered taking

d=M o5 ) M, R
= ¢5_! _ [ -
¢ D, o) v (11)
_ 8S
C==V:[ MV </, () To allow for different diffusivities in the solid and liquid

phases, in the followingD. will be taken asD.=Dg

whereM, andM, are positive constants. For the pure spe-+P(#)(D;—Ds), D, and Ds being the diffusivities in the
ciesA andB, the bulk free-energy density is postulated to beliquid and in the solid, respectively. Notice that[ih2] the

of the form: contribution of (Vc)? in Eq. (1) is neglected, setting=0,
and, dealing with isothermal solidification, on the right-hand
fAB(¢, T)=TG*B(¢) side of Eq.(8) only the first two terms are retained.

As we neglect the latent heat diffusion, the temperature
+p(p)LAB[ 1 T )—CTIn T 4) field is decoupled from the phase and concentration fields,
TAB TAB) and is represented as a traveling wave moving towards the
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positive x direction with uniform gradienG and constant
velocity V,:

aT ~ JT

EI—V()W:—VOG.

(12)

The problem will be treated by scaling lengths to some (Jlend)

reference lengtl¥ and time to£%/D,. We allowM, to de-
pend on the local composition M¢=(1—C)M$+CM3.

To associate the model parameters to the material properties
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TABLE |. Material parameters for the Ni-Cu alloy.

Parameter Nickel Copper

T (K) 1728 1358

L (J/cn?) 2350 1728

Vv (cmP/mol)? 7.0 7.8
3.7x10°° 2.8x10°°

B (cm/K 9P 160 198

D, (cn?ls) 107° 107°

of the alloy, we follow the method suggested by Warren andAn average value of 7.4 will be taken.

Boettinger[12], based on the analysis of the sharp interface’From the estimation of Willneckest al. [14].

limit of the model, though in the present case the contribu-

tion of (Vc)? in Eqg. (1) could affect to some extent the was fixed até=2.1x 104 cm; the kinetic undercooling co-
results of their analysis. Then the governing equations beefficients were fixed tog"=128.64cms*K™! and g°®

come
(9(,25 A B 2 A
i ~LA—e)mi+em™][Vid+(1-c)Q™(T, ¢)
+cQ¥(T,¢)], 13
ac
E=—V'{C(l—C)M¢>)[HA(¢>,T)—HB(¢>,T)]V¢

+c(1-C)N(P)I' (¢, T)VT

+c(1-c)N\(¢)V(EVZc)—\(¢)Vc}, (14)
aT aT
e —VOW =—V,G, (15)

where in Eq.(14) we put E=(v,6%)/(R&?), HAB(¢,T)
=(vn/R)HAB(¢,T), T'(,T)=(Vu/R)T (4, T), andr(¢)
=D¢/D;+p(¢)(1-Ds/D)). In Eqg. (15 we define V,
=V,&/D, and G=G&. The functionQ”B(¢,T) is defined
as

2
QMB(o,T)=— £ doid)
’ (h*8)% d¢
1 &M T-TAEBd
s iB AB — p(d))’ (16)
6V2 *PhAB T do
where o8 and h*B indicate the surface tension and the

interface thickness of the pure componeatandB, respec-

tively; f is the initial (equilibrium) interface temperature.

The model parameters®® andW"® depend on the physi-
cal properties of the alloy components through
oA B

< AB 12

=3 TARRAE

BA’BO'A’BTA’B

mAYB: D|LA'B

17

where 8AB is the kinetic undercooling coefficient of pufe

=153.60cms*K %, not far from the actual best estimates
[14], and a realistic value for the interface thickness was

selected as 1.6810 7 cm. With these valuesiv*=1.082,
WB=1.079, andn”*=m®=350 result.

Ill. NUMERICAL METHOD

The evolution of Eqs(13)—(15) has been considered in
one spatial dimension, in the domair<@=<x,,, with X,
large enough to prevent finite-size effects. Fluxless boundary
conditions for ¢, ¢ and transparent conditions fdr were
imposed at the domain walls. The initial temperature profile
was defined as

T(x,0)=T,+G(X—Xy), (18)

with a phase boundary at temperatiifeseparating the solid
region (x<xgy, ¢=0) and the liquid regior(x>xq, ¢=1).

The interface was prepared in equilibrium conditions, with
the initial solute concentration in the two phases correspond-

ing to the equilibrium values at,. Then the temperature
profile was pulled towards the positivedirection, starting
the solidification process.

To discretize the equations of the model second order in
space and first order in time, finite-difference approximations
were utilized; then, an explicit scheme was employed to ad-
vance the solution forward in time. As we did not use adap-
tive techniques, the entire grid was resolved at the same
scale. The choice of the computational grid posed some deli-
cate problems. The mesh spacifig has to be selected low
enough to ensure an accurate resolution of both the phase-
field and concentration profiles in the interfacial region. The
fourth-order concentration equatidd4) requires, for nu-
merical stability, a time stept, which scales asAx)*. On
the other hand, the phase-field equati@B) is a diffusion-
reaction equation with diffusivityD ;= m*B=350; in this
case, the time step for stabilitit,, is expected to scale as

or B, which relates the interface undercooling to the interfacg Ax)? and, in one dimension, must be chosen at least lower

velocity v throughv = gAB(TAB—T)).

than (Ax)%/(2D,). Because of the large value &f,, in

To estimate the above parameters we referred to the themost of the simulations we foundt,<At.. At least in

mophysical properties of nickdkolven} and copper(sol-

principle, to save computational effort, the two equations

ute), summarized in Table |. The solute diffusivity in the could be resolved with different time stef<., iterating the

solid phase was estimated Bg=10°D,. The length scale

equation with smalleAt within a single time step of the
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0.074 IV. NUMERICAL RESULTS

A. Growth in steady conditions

At first, we characterized the solidification process in
steady conditions, determining the two constitutional laws
k(v) andT,(v) which describe the interface dynamics. We
setc_,,=0.056 09 in the solid phase, .,=0.07068 in the

liquid phase, and’ ;= 1706.06 K. Depending on the isotherm
velocity, an oscillatory instability of the solidification front
K can arise when the imposed thermal gradient is not suffi-
;‘ s, ciently high (see the next subsectionThen we choses
: %, =200 K; with this value, after an initial transient, solidifica-
tion proceeded at constant rate and with uniform concentra-
tion c, ., in the solid phase. The solute segregation on the
moving front was evaluated computing the minimum and
0.070 ' ' ' ' ' maximum valuesc! and ¢ of the solute concentration
014 015 0l6 017 018 019 020 across the interface and defining the partition coefficient as
x k(v)=c%/c] ; the interface temperature was determined in-
FIG. 1. Concentration profile foe/ §=0.025, calculated with terpolating the temperature flel.d B($=0.51). E?“:ept fqr
three different values of the grid spacidg: Ax=8x10* (dia- tgmperatgres, all the result’s will be presented in nondimen-
monds, Ax=6x10"* (squares and Ax=4x10* (triangles. sional units; for _the reader’'s conjznodlty, we recall thgt the
V=500 andG =200 K. length scale is fixed af=2.1X10""cm, and the resulting
time 2and velocity scales are 4410 3s and 4.76
. . . . X 10" cml/s, respectively.
equation with largert); however, we decided to use the To compare our findings with the predictions of the con-

smallest OfAt¢ andAt, for bott equations. . .
c -
Previ tudi Juct i r i i i 'EInUOUS growth model, we recall that the latter gives the de

dicate that accurate solutions can be obtained choosing a grpoendence of the partition coefficient on the growth velocity

. ) . e in the form
spacing of the order of the nominal interface thickne8$
=hAB/£. In our simulations we have*B=8x10"*. We _ ketvivg
observed that to avoid spurious instabilities of the growth k(v)= 1+vivy'
rate the maximumAx allowed wasAx=6x10"* for e/ &
>0.1; at lower values o&/s, the stretching of the solute k. being the equilibrium value for a stationary interfe(ég
profile in the interfacial region allowed us to use a value of=0.797 in our caseandv, the diffusional velocity for the
Ax=8x10 * Convergence of the numerical results wassolute redistribution across the moving fromg; is generally
checked for both low and large valuesed®. Figure 1 shows expressed asy=D/a, whereD is an interface diffusivity
the solute profile fore/ §=0.025,V,=500, andG=200K. anda is the width of the concentration transition layer.
The initial concentration of the alloy is_..,=0.056 09 in the An asymptotic analysis of the phase-field model, con-
solid phase ana,..=0.07068 in the liquid phase, corre- ducted in the limite/ 5<1 [5] pointed out that the partition
sponding to an equilibrium temperatufe=1706.06 K. The ~ coefficient scales, at large velocities, asH(v)~v ™%, un-
picture is taken at=2.5x10"4, when the growth process like the predictions of the CGM which give -1k(v)

reached a steady regime. The three sets of data refer to dif-V - However, our simulations were conducted wétd
ferent values of Ax, i.e., Ax=8x10% 6x10 4 4 ranging from 0.025 toe, so that we tried to identify in any

X104, It can be observed that with these resolutions the@se a characteristic velocity for solute trapping through a
solute profile is almost independent k. In Table Il we best fit of our numerical data with the dependence given by

summarize the grid parameters we used in our simulation§9- (19). The ratio €4 sets the length scale of the solute
for each value of/s. transition layer across the solid-liquid interface, opposing to

the contraction of the solute profile. This issue is stressed in
Fig. 2, where the solute field is shown for three different
values oféel/J; the isotherm velocity i8/,=500. The thick-

0.072

solute concentration

(19

TABLE Il. Resolution of the computational grid at varioess

values. ness of the transition layer is=24x10 * for =0 and
s AX At stretches td =70x10 * for €/5=0.025. Then we expect
that solute relaxation across the interface becomes less effec-
0.025 8x 1074 2x10710 tive at large velocities with decreasirgs. Figure 3 shows
0.050 8<1074 8x 10710 the partition coefficient, normalized &k(v) —ko1/(1—k),
0.100 8<1074 8x10°10 versus the interface velocity for different values . We
0.200 4<10°4 1.25x10 10 observe that the curves corresponding &0 and €/6
0.500 4<10°4 1.25x10° 10 =1.0 are almost indistinguishable, but &9 is further de-
1.000 4x 104 1.25%x10°10 creased, the partition coefficient shifts towards higher values
»(5=0) 4% 1074 1.25x10°10 and the onset of solute trapping occurs at lower interface

velocities. Usingv4 as an adjustable parameter in ELP) to
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0.0800 TABLE lII. Diffusional velocity v for different values ofe/ 5.
=0 28 Vg
0.0780
-- == £/8=0.050 0.025 25
g 0.050 55
&= £/8=0.025
£ 0.0760 0.100 110
S 0.200 190
g 0.500 265
2 00740 1.000 285
é o 290
0.0720 r . .
branch. Along these arguments the position of the maximum
on thev axis should be strongly affected by the diffusional
0.0700 , ‘ . , velocity v4 and, ultimately, by the ratie/S. Figure 4 shows
005 003 001 001 003 005 the n_umerlcal results for th&(v) de_pen_denc_e. With in-
creasinge/ 6 the onset of solute trapping is shifted towards
X-X

1 higher velocities and* is shifted as well. The latter ig*
=200 for e/ 5=0.025 and increases until* =1400 when
5=0. On the other hand, the temperatdré undergoes a
variation of few tenths of degree over the whole range of
variation of /6. The above results suggest that phenomena

critically dependent orv* could be natural candidates to

fit the data represented in Fig. 3, we obtained the resultsgimate the extent of the solute gradient correction in the
shown in Table Ill. The diffusional velocity corresponding to ,4qel.

e/ 6=0.025 is more than an order of magnitude lower than
the asymptotic value correspondingde- 0. It is worth not-
ing that the available experimental dat&b,16 indicatevy
values which never fall below the meter per second range,
suggesting that the lowest values &b give an unrealistic TheT,(v) curves shown in Fig. 4 exhibit a nonmonotonic
picture of the solidification process. behavior. In the range of positive slope the driving force for
The dependence of the interface temperature on the intethe procesdi.e., the thermodynamic undercooling a de-
face velocity is the result of two opposite effects. At low creasing function of the associate fl(tke growth ratg re-
velocities, due to solute trappir@nd to the consequent re- sulting in unstable planar growth. When the isotherm veloc-
duction of solute concentration on the liquid side of the in-ity is fixed in this region and the thermal gradient is not
terface, T, is an increasing function of. At higher veloci- sufficient for an effective restabilization, steady growth is
ties the undercooling required to advance the solidificatiorPrevented and the process undergoes periodic transitions be-
front becomes important: tHg(v) curve traverses a maxi- tween low- and high-velocity stat¢40,17-2Q. This insta-
mum atv=v*, T=T*, and then exhibits a descending bility is responsible for the formation of the so-calleanded

FIG. 2. Concentration profile fo¥,=500 andG=200K; X,
represents the position of the solid-liquid interface, located) at
=0.5.

B. Oscillatory instability of the solidification front:
The effect of the solute profile

1.0 g'» 1703.5 =0
o 09 9 ¢ 2 8 8 % ¢ ¢
SEE R U O S SN St
I e £/6=1.000
03 1703.0 /520,500
= = £/8=0.200
o [}
. 5 °
7306 | - 8=0 2 17025 T ¢/6=0.100
‘AF : . 5 * . * o
s * o0
g e £/8=1.000 g- B £/8=0.050
o]
"L 04 -l €/8=0.500 g 17020 NG 0 e/8002s
- J i a9
]’ = £/5=0.200 5 N
n = N g
=i \§ C.>
02 j €/8=0.100 17015 ~i g
' N
© £/8=0.050
° =
oo . . . €/6=0.025 17010 . . .
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

interface velocity

FIG. 3. Normalized partition coefficient versus the front velocity

for different values of the/§ ratio.

interface velocity

FIG. 4. Interface temperature versus the front velocity for dif-
ferent values of the/é ratio.
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1000 5000
a ¢ — =0
£/5=0.100
800 4000
2 2
§ 600 | § 3000
2 2
3 5
g 400 F g 2000
3 2
£ £
200 | 1000 LJ
0 1 L 0 u QUL
0.000 0.001 0.002 0.003 0.000 0.001 0.002 0.003
time time
5000
b
— ¢/8=0.200
4000 F
=
2 3000 |
)
>
L
Q
<
g 2000
g
1000
0 1 1
0.000 0.001 0.002 0.003
time

FIG. 5. Interface velocity vs time. The isotherm velocityMig= 250 and the thermal gradie®=40K. (a) ¢/ 5=0.1, (b) ¢/5=0.2, and
(c) 6=0.

structures Observed by several authors in rapidly solidifiedthe final steady state with=V,. For e/ =0.2 the oscilla-
alloys, at growth rates near the absolute stability limit, thesdions are still damped, but with a larger amplitude. A totally
structures consist of a regular succession of dark and lighdifferent dynamic behavior emerges whér-0. Here the
bands, parallel to the solid-liquid front, with a band spacingisotherm velocity is fixed well inside the unstable branch; the
ranging from 0.3 to 1.5um. Detailed experimental studies process never reaches a steady regime, and the interface ve-
[21-29 have shown that the dark bands have a precipitatéocity continuously oscillates around the average valige
structure, either cellular-dendritic or eutectic, depending onWe observe, on the other hand, that the frequency of the
the alloy composition; the light bands are formed ofoscillations[v=1961 in Fig. %c)] is almost unaffected by
precipitation-free solid solution, with a composition that is the €/ § ratio.
uniform and equal to the nominal concentration of the alloy. The cyclic behavior of the interface dynamics shown in
As shown in Fig. 4, with increasing § the unstabldup-  Fig. 5(c) is represented in Fig. 6 as an orbit followed by the
sloping branch of theT,(v) curves extends towards larger system in the T;,v) plane (solid dotg. The vertical line
interface velocities, suggesting that the region of the paramindicates the isotherm velocity,=250; on the same graph,
eters space where the oscillatory instabilind the banded the solid line represents the steaByv) curve. For most of
structure is expected should be strongly dependent on thehe cycle, the interface velocity is lower thaf, and the
/5 ratio. Plots of the interface velocity versus time areinterface cools down; then, the orbit traverses the steady
shown in Figs. g)-5(c) for different values ofe/s. The  T,(v) curve at pointA, where the front velocity is not far
isotherm velocity isVo=250 and the thermal gradient@  from V,, and with a strong acceleration reaches p@&in
=40K. Whene/5=0.1 the effect of initial conditions is the stable branch. Here the interface velocity is much higher
rapidly lost; the front velocity (and the interface tempera- thanV, and the interface warms up; solidification is decel-
ture T,) describes few damped oscillations before reachingrated and the operating point shiftsGoA numerical study
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1703.0

0.0800
[ N I £/8=0.1
17025 | . 0.0775 |
< <8
£ § 0.0750
£ 17020 i
:
< -
E g 0.0725
g 17015 et o
g ! R L
< Ao 2 00700 |
E .°'£ ”
1701.0 % 4
0.0675 |
1700.5 . L L L 0.0650 L
0 1000 2000 3000 4000 5000 0.00 0.25 0.50 0.75 1.00
interface velocity x
FIG. 6. Orbit followed by the process in th& (,v) plane for FIG. 7. Solute concentration profile along the growth direction
6=0. The isotherm velocity is indicated by the vertical linéy(  for different values of thes/§ ratio. The isotherm velocity ¥/,
=250); G=40K. The solid line indicates the steady(v) curve. =250 and the thermal gradie@®=40K.
The meaning of the point&, B, andC is illustrated in the text.
conducted in two dimensiong6] showed that in the low- V. CONCLUSIONS

velocity section of the cycle the planar front breaks into a

2 Rt . - In summary, we addressed the rapid directional solidifi-
dendritic pattern, resulting in strong solute microsegregation,ation of a binary alloy through a phase-field model which
at high velocity, the absolute stability limit is reached, the

. , includes gradient terms for both the order parameter and con-
dendritic pattern is suppressed, and planar growth occur

) ” Tentration field. To relate the extent of the gradient correc-
Notice that the shapg of the qycle can be modified when th'ﬁon for the solute field to measurable quantities, we focussed
latent heat diffusion is taken into accodi,27).

As the solute segregation across the interface depends o effects whic'h.e}re gritically dependent on the composition
the interface velocity, we can argue that the extent of th@cross_the_ solidification front. We found that_ the interface
concentration gradient correction should leave a trace in thdYNamics is almost unaffected when te& ratio changes
solidified alloy. In Fig. 7 we show the concentration profile TOM large values tee/5~1: whend is further increased
with V,=250 andG=40K. The solid-liquid interface is until e/ 6=0.025, the d|ﬁu5|or_1al veIomtyd is decreased by
clearly recognizable at the peak ofx). For e/5=0.1 the Mmore than an order of magnitude; the interface temperature,
concentration profile in the solid phase shows damped osciPn the other hand, is aimost unaffected. The available experi-
lations, along a distance corresponding to the initial tranmental data, which indicate the onset of solute trapping in
sient; when the steady regime is reached, the composition éfhe meter per second range, suggest that small value/s of
the solidified alloy corresponds to the liquid composition atgive an unrealistic picture of the solidification process and
infinity. For e/ 6=0.2 we observe that a distancex$£0.5 should be discarded. The characteristic velogjfixes also
(corresponding tax~1 uwm) was not enough to reach the the range of interface velocities where the oscillatory insta-
steady regime. Whed=0 the periodic structure in the solid bility of the solidification front is expected, as it reflects on
phase reflects the periodic variations of the interface velocityhe value ofv* which separates the stable and unstable
and temperature: at low velocity; reaches its minimum; branches of the steadl;(v) curve. At present, the evalua-
then, the interface accelerates, solute partitioning is suption of the growth rate in the banded structures is difficult,
pressed, and increases. The wavelength of the solute con-and experimental errors are greater than 2@%j; however,
centration profile has been estimated\as0.128, which is  the large excursion o¥* over the range o&/$ values we
practically coincident with the expected valu¥,/v  explored in this paper should allow a reliable estimation of at

=0.1274. least the order of magnitude of this parameter.
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